Investigations of the EPR Parameters and Local Structures for Two Tetragonal Cr³⁺ Centers in NH₄Cl Crystal

Shao-Yi Wu and Wen-Chen Zheng

Department of Material Science, Sichuan University, Chengdu 610064, P. R. China International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China

Reprint requests to Dr. S.-Y. W.; E-mail: wushaoyi@netease.com

Z. Naturforsch. 56a, 326-328 (2001); received February 1, 2001

In this paper, the zero-field splittings D and g factors g_{\parallel} , g_{\perp} at room temperature for two tetragonal Cr^{3+} centers in $\operatorname{NH}_4\operatorname{Cl:Cr}^{3+}$ crystal have been investigated by a two-spin-orbit (S.O)-parameter model, in which both the contribution due to the S.O. coupling of central d^3 ion and that of ligands are considered. From the investigations, the signs of zero-field splitting and the local structures of both centers are obtained. The electron paramagnetic resonance parameters D, g_{\parallel} and g_{\perp} of both centers are also explained.

Key words: Spin-orbit Coupling; Electron Paramagnetic Resonance (EPR); Crystal-field Theory; Cr³⁺; NH₄Cl₄.

PACS: 76.30Fc; 71.70Ch

1. Introduction

For crystal line NH₄Cl:Cr³⁺ the electron paramagnetic resonance (EPR) and optical spectra [1, 2] indicate that the Cr3+ ion occupies an interstitial site in the plane of four CT (see Fig. 4 of [1]), and the original two NH₄⁺ ions along the [001] axis (or C₄ axis) may be substituted for Cl⁻ ions or water molecules because of the charge compensation. Thus, two tetragonal Cr3+ centers are formed in NH₄Cl:Cr³⁺ crystal. Center I is associated with an incorporated [CrCl₄(H₂O)₂] complex, and center II is a $(CrCl_6)^{3-}$ complex. The EPR parameters |D|, g_{\parallel} and g_{\perp} for both centers were measured [1], however the signs of the zero-field splittings D of both centers were not determined, and so these EPR parameters have not been explained. In addition, although the defect models for the two Cr³⁺ centers were given, the local structure data of these defect centers are not clear as yet. In this paper we study these problems by using the perturbation formulas of EPR parameters based on a twospin-orbit (S.O.)-parameter model.

2. Calculation

Usually, for transition-metal ions in crystals, the theoretical investigation of EPR parameters is based on Macfarlane's high-order perturbation formulas in which only the contribution from the S.O. coupling co-

efficient of the central d^3 ion is considered [3, 4]. However, for NH₄Cl:Cr³⁺, since the S.O. coupling coefficient ζ_p^0 ($\approx 587 \text{ cm}^{-1}$ [5]) of the Cl⁻ ligands is much greater than the coefficient ζ_d^0 ($\approx 273 \text{ cm}^{-1}$ [6]) of the central Cr³⁺ ion, the contribution from S.O. coupling of ligands cannot be neglected. So, the above conventional perturbation formulas of D, g_{\parallel} and g_{\perp} [3, 4] for a d^3 ion in axial symmetry should be substituted by the two-S.O-parameter formulas containing the contributions from both the S.O. coupling of the central d^3 ion and the ligands [5, 7, 8]. For d^3 ions in tetragonal symmetry, the two-S.O.-parameter formulas of D, g_{\parallel} and g_{\perp} can be expressed as [8]

$$D = (35/9) D_{t} \xi'^{2} [1/E_{1}^{2} - 1/E_{3}^{2}] - 35BD_{t} \zeta \zeta'/E_{2}E_{3}^{2},$$
(1)

$$\begin{split} g_{\parallel} &= g_{s} - 8k'\xi'/3E_{1} - 2\xi'(2k'\xi - k\xi' + 2g_{s}\xi')/9E_{1}^{2} \\ &+ 4\xi'^{2}(k - 2g_{s})/9E_{3}^{2} - 2\xi^{2}(k + g_{s})/3E_{2}^{2} \\ &+ 4k'\xi'\xi/9E_{1}E_{3} - 4k'\xi'\xi/3E_{1}E_{2} \\ &+ 4k'\xi'\xi/3E_{2}E_{3} + 140k'\xi'D_{t}/9E_{1}^{2}, \\ g_{\perp} &= g_{\parallel} - 210k'\xi'D_{t}/9E_{1}^{2}, \end{split}$$

where

$$\zeta = N_{t} (\zeta_{d}^{0} + \lambda_{t}^{2} \zeta_{p}^{0}/2),
\zeta' = (N_{t} N_{e})^{1/2} (\zeta_{d}^{0} - \lambda_{t} \lambda_{e} \zeta_{p}^{0}/2),
k = N_{t} (1 + \lambda_{t}^{2}/2),
k' = (N_{t} N_{e})^{1/2} (1 - \lambda_{t} \lambda_{e}/2),$$
(3)

0932-0784 / 01 / 0300-0326 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

and g_s (= 2.0023) is the spin-only value and D_t the tetragonal field parameter. E_i are the zero-order energy separations [8]. N_{γ} and λ_{γ} are the LCAO coefficients, which can be obtained from the approximate relationship [7, 8]

$$f_{\nu} = N_{\nu}^{2} \left[1 + \lambda_{\nu}^{2} S_{dp}^{2}(\gamma) - 2 \lambda_{\nu} S_{dp}(\gamma) \right]$$
 (4)

and the normalization correlation

$$N_{\gamma} \left(1 - 2\lambda_{\gamma} S_{dp}(\gamma) + \lambda_{\gamma}^{2} \right) = 1, \tag{5}$$

where $S_{\rm dp}(\gamma)$ is the group overlap integral and f_{γ} [$\approx (B/B_0 + C/C_0)/2$] the ratio of the Racah parameters for an ion in a crystal to those for the free ion. From the optical spectra of a center II in NH₄Cl:Cr³⁺ at room temperature [2], we have $D_{\rm q} \approx 1350~{\rm cm}^{-1}$, $B \approx 650~{\rm cm}^{-1}$ and $C \approx 3100~{\rm cm}^{-1}$. For a free Cr³⁺ ion [6], $B_0 \approx 1030~{\rm cm}^{-1}$ and $C_0 \approx 3850~{\rm cm}^{-1}$; then we have $f_{\gamma} \approx 0.718$.

From the superposition model [9], the tetragonal field parameter for center II is

$$D_{\rm t} \approx (16/21) \,\bar{A}_4 \,({\rm Cl}^-) \,[(R_0/R_\perp)^{\rm t_4} - (R_0/R_\parallel)^{\rm t_4}], \quad (6)$$

where R_{\parallel} and R_{\perp} are the Cr^{3+} - Cl^{-} distances parallel with and perpendicular to the C_4 axis, respectively. The reference distance $R_0 \approx \bar{R} \approx (R_{||} + 2R_{\perp})/3$. For an ionic crystal, similar to the point-charge model, we take the power-law exponent $t_4 \approx 5$ [9]. The intrinsic parameter \bar{A}_4 (Cl⁻) \approx (3/4) D_a [10]. Since the Cr³⁺ ion occupies the interstitial site, if the Cl ions along the C_4 axis is considered to be in the exact site of the NH₄⁺ ion it replaces, the Cr³⁺-Cl⁻ distance ($\approx a_0/2 \approx 1.94 \text{ Å}$ [11]) is too small to be regarded as reasonable when compared with the normal Cr³⁺-Cl⁻ distance ($\approx r_{\rm Cr^{3+}}$ $+ r_{Cl} \approx 0.63 + 1.81 \approx 2.44 \text{ Å}$, where r_i denotes the ionic radius [12]). So, we assume that the two Cl⁻ ions do not occupy the exact NH₄ site, but are shifted away from the Cr^{3+} ion along the C_4 axis, which results in a normal Cr³⁺-Cl⁻ distance $R_{\parallel} \approx 2.44 \text{ Å}$. Thus, in the above formulas only the distance R_{\perp} is not known. By fitting the calculated optical spectral parameters D_t and the EPR parameters to the observed values, we obtain $R_1 \approx 2.465$ Å. The calculated optical and EPR parameters are compared with the observed values in Table 1. In the above calculation, the overlap integrals $S_{dp}(t_{2g}) \approx 0.02121$ and $S_{dp}(e_g) \approx 0.06346$ are calculated from the Slater-type SCF functions [13, 14] and the average distance $\bar{R} \approx 2.456 \,\text{Å}$. Thus, from (3)–(5), we have $N_t \approx 0.855$, $N_e \approx 0.872$, $\lambda_t \approx 0.433$, $\lambda_e \approx 0.451$, $k \approx 0.935$, $k' \approx 0.779$, $\zeta \approx 281 \text{ cm}^{-1}$ and $\zeta' \approx 186 \text{ cm}^{-1}$.

Table 1. The tetragonal field parameter $D_{\rm t}$ and EPR parameters $D,\,g_{\parallel}$ and g_{\perp} for two tetragonal ${\rm Cr}^{3+}$ centers in NH₄Cl crystal.

	Center I [CrCl ₄ (H ₂ O) ₂] ⁻				Center II [CrCl ₆] ³⁻			
	D _t (cm ⁻¹)	D (cm ⁻¹)	g_{\parallel}	g_{\perp}	$D_{\rm t}$ (cm ⁻¹)	D (cm ⁻¹)	$g_{ }$	g_{\perp}
Cal. Expt.	-277	-0.108 -0.111 ^a				-0.0207 -0.0210 ^a		

^a [1], in which the signs of D for the two centers were not given.

^b [2].

For center I, according to the superposition model [9], we have

$$D_{t} \approx (16/21) [\bar{A}'_{4} (Cl^{-}) - \bar{A}_{4} (H_{2}O)],$$
 (7)

where the intrinsic parameter \bar{A}'_4 (Cl⁻) $\approx \bar{A}_4$ (Cl⁻) $(R_0/R_1)^{t_4} \approx 1013 \text{ cm}^{-1} \text{ and } \bar{A}_4(H_2O) \approx (3/4) D_a(H_2O).$ The normal value of $D_q(H_2O)$ is 1740 cm⁻¹ [15]. Since the S.O. coupling coefficient of O^{2-} ($\approx 150 \text{ cm}^{-1}$ [16]) in molecular water is much smaller than that of Cl-, the contribution due to the coefficient $\zeta_p^0(O^{2-})$ may be ignored. Thus, we can approximately calculate the integrals $S_{dp}(\gamma)$ by considering only the overlaps among Cr^{3+} and four coplanar Cl^{-} ions with $\bar{R} \approx R_{\perp}$. The results and hence the parameters in (3)–(5) are $S_{dp}(t_{2g}) \approx$ 0.02067, $S_{dp}(e_g) \approx 0.06224$, $N_t \approx 0.855$, $N_e \approx 0.872$, $\lambda_{\rm t} \approx 0.432$, $\lambda_{\rm e} \approx 0.450$, $k \approx 0.935$, $k' \approx 0.779$, $\zeta \approx$ 281 cm⁻¹ and $\zeta' \approx 186$ cm⁻¹. Substituting all these parameters into (1) and (2), we calculate the EPR parameters for center I. The results show good agreement with the observed values (see Table 1).

3. Discussions

From the above studies, two points should be discussed here:

- (i) The signs of the zero-field splittings D for both Cr³+ centers in NH₄Cl are negative. The reasons are due to the facts that for the center II the observed value of D_t is negative and that for center I the cubic field parameter D_q(H₂O) is larger than D_q(Cl⁻). Thus, the EPR parameters D, g_{||} and g_⊥ can be explained reasonably by the two-S.O.-parameter model.
- (ii) The Cr^{3+} – Cl^{-} distances R_{\perp} in center II and also center I is 2.465 Å. The value is also close to the sum (≈ 2.44 Å) of the ionic radii of Cr^{3+} and Cl^{-} . Considering that the cubic field parameter

 $D_{\rm q}$ ($\approx 1350~{\rm cm}^{-1}$ [2]) for center II in NH₄Cl:Cr³⁺ is close to that ($\approx 1380~{\rm cm}^{-1}$ [15]) of the normal value, the result that the above distances R_{\parallel} and R_{\perp} are close to the normal Cr³⁺-Cl⁻ distance (i.e., the sum of ionic radii of Cr³⁺ and Cl⁻) can be regaraded as reasonable. The distance ($\approx a_0/\sqrt{2} \approx 2.737 \text{ Å}$ [11]) between the interstitial site, in the plane of four Cl⁻, and the Cl⁻ ion is greater than the distance R_{\perp} , so, when the Cr³⁺ ion occupies the interstitial site, the four Cl⁻ ions should be displaced towards the Cr³⁺ ion by about 0.27 Å owing to the electrostatic attraction between Cr3+ and Cl-. For center I, the use of the normal value of D_q for the $Cr(H_2O)_6$ group suggests that the Cr3+-H2O distance (characterized by the Cr³⁺-O²⁻ distance in this group) should be close to the normal distance ($\approx r_{\rm Cr^{3+}} + r_{\rm O^{2-}} \approx 1.95 \, \rm \mathring{A}$ [12]). Since the Cr³⁺-H₂O distance is close to the Cr^{3+} -NH₄ distance ($\approx 1.94 \text{ Å}$ [11]), the substitutional H₂O molecules are almost in the sites of NH₄. Thus, the local structural parameters for both defect centers in NH₄Cl:Cr³⁺ crystal are obtained by analyzing the EPR and optical data. It appears that the effect of ionic radius or size is dominant for the local structures around the Cr3+ ion in NH₄Cl. This point should be checked for other similar cases.

- [1] F. S. Stibbe and N. J. Trappeniers, Physica B 95, 81
- [2] J. Lakshmana Rao, Phys. Stat. Sol. (b) 139, 241 (1987).

- [3] R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
 [4] R. M. Macfarlane, Phy. Rev B 1, 989 (1970).
 [5] G. L. McPherson, R. C. Kach, and G. D. Stucky, J. Chem. Phys. 60, 1424 (1974).
- [6] J. S. Griffith, The Theory of Transition-Metal Ions, Appendix 6, Cambridge University Press, London 1964.
- [7] M. L. Du and C. Rudowicz, Phys. Rev. B 46, 8974 (1992).
- [8] S. Y. Wu and W. C. Zheng, Physica B 233, 84 (1997).[9] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699

- [10] W. L. Yu and M. G. Zhao, Phys. Rev. B 37, 9254 (1988).
- [11] R. W. Wyckoff, Cryst. Struct., Interscience, New York
- [12] R. C. West, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1989, p. F-187.
- [13] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [14] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
- [15] A. S. Chakaravarty, Introduction to the Magnetic Properties of Solids, John Wiley and Sons Inc., New York 1980,
- [16] C. E. Moore, Atomic Energy Level, National Bureau of Standard, Washington 1949.